Package: abglasso 0.1.1

abglasso: Adaptive Bayesian Graphical Lasso

Implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>.

Authors:Jarod Smith [aut, cre], Mohammad Arashi [aut], Andriette Bekker [aut]

abglasso_0.1.1.tar.gz
abglasso_0.1.1.zip(r-4.5)abglasso_0.1.1.zip(r-4.4)abglasso_0.1.1.zip(r-4.3)
abglasso_0.1.1.tgz(r-4.5-any)abglasso_0.1.1.tgz(r-4.4-any)abglasso_0.1.1.tgz(r-4.3-any)
abglasso_0.1.1.tar.gz(r-4.5-noble)abglasso_0.1.1.tar.gz(r-4.4-noble)
abglasso_0.1.1.tgz(r-4.4-emscripten)abglasso_0.1.1.tgz(r-4.3-emscripten)
abglasso.pdf |abglasso.html
abglasso/json (API)
NEWS

# Install 'abglasso' in R:
install.packages('abglasso', repos = c('https://jarod-smithy.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 1 scripts 325 downloads 1 exports 3 dependencies

Last updated 4 years agofrom:284d05fc27. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 24 2025
R-4.5-winNOTEMar 24 2025
R-4.5-macNOTEMar 24 2025
R-4.5-linuxNOTEMar 24 2025
R-4.4-winNOTEMar 24 2025
R-4.4-macNOTEMar 24 2025
R-4.4-linuxNOTEMar 24 2025
R-4.3-winNOTEMar 24 2025
R-4.3-macNOTEMar 24 2025

Exports:BayesGlassoBlock

Dependencies:MASSpracmastatmod